- PhiloLog - https://www.philolog.fr -

La démonstration.

                     

     
 Pour les logiciens le seul raisonnement qui soit absolument rigoureux est la déduction.

 Déduire c’est tirer d’une ou de plusieurs propositions appelées prémisses une conclusion qui en découle logiquement et nécessairement.

Ex : Le syllogisme. Tous les hommes sont mortels

                                 Socrate est un homme

                                 Donc Socrate est mortel.

Ex : La démonstration mathématique. Elle est une opération intellectuelle ayant pour fin d’établir la vérité d’une proposition en la déduisant de prémisses admises ou démontrées. Le raisonnement déductif fait circuler la vérité d’un point de départ admis à une proposition dont on veut établir la vérité.

  A la différence du syllogisme dont la conclusion n’apprend rien de plus que ce qui est déjà contenu dans les prémisses (raison pour laquelle Descartes dénonce sa stérilité) la démonstration mathématique unit la rigueur à la fécondité.

  

  Rigueur car, comme dans le syllogisme, elle déploie ce qui est contenu dans les prémisses.

  Fécondité car elle invente des règles, telles que le passage d’une proposition à une autre n’est pas une pure tautologie, il apprend quelque chose.

Ex : Connaissant la valeur de la somme des angles du triangle, on peut démontrer par un processus de généralisation, quelle est la valeur de la somme des angles d’un polygone quelconque. Celle-ci est égale à autant de fois deux droits qu’il a de côtés, moins deux.

 Ex : Il est possible de démontrer à partir du rapport A /B =C/D que AD=BC c’est-à-dire que le produit des extrêmes est égal au produit des moyens. La règle opératoire consiste à réduire les deux fractions au même dénominateur. Sachant qu’une fraction ne change pas de valeur quand on multiplie ses deux termes par la même quantité, il suffit de multiplier le numérateur et le dénominateur de A / B par D et le numérateur et le dénominateur de C / D  par B. On obtient alors AD/BD=BC/BD d’où il découle que AD=BC.

  Etymologiquement la démonstration est un discours qui montre.

  Mais que montre-t-il ? Il ne montre pas un fait, un évènement c’est-à-dire quelque chose de perceptible par les sens. La démonstration ne fait pas appel à la sensation. Elle n’emprunte rien à l’expérience.

  « Même s’il était possible de percevoir que le triangle a ses angles égaux à deux droits, nous en chercherions encore une démonstration » écrit Aristote pour qui une science est démonstrative ou n’est pas une science. « Ce que nous appelons savoir c’est connaître par le moyen de la démonstration ».

   Les Grecs sont les inventeurs de la démonstration et ils méritent à ce titre un hommage éternel. Pourquoi ?

  Parce que la démonstration cherche à établir la vérité par les seules forces de la raison. Elle est un raisonnement qui se suffit à lui-même puisque c’est « un discours tel que, certaines choses étant posées, quelque chose d’autre que ces données en résulte nécessairement par le seul fait de ces données » (Aristote)

  Celui qui suit la démonstration ne peut pas ne pas consentir aux conclusions. La démonstration entraîne l’adhésion rationnelle de façon nécessaire. Elle fait autorité par elle-même, cette autorité étant celle de la raison en chacun de nous.

 

Il s’ensuit que :

 

  -La démonstration se distingue de l‘interprétation qui a un caractère incertain et conjectural. Alors que le conflit des interprétations est consubstantiel à la nature de l’interprétation, la démonstration est un raisonnement contraignant. Se rendre à une démonstration revient à faire de la raison le seul arbitre en matière de vérité.

  -La démonstration étant la raison en acte, l’investissement personnel de la raison de chacun est engagé dans la procédure démonstrative. Toute démonstration est en ce sens invitation à penser par soi-même c’est-à-dire à s’assurer par son propre effort de la validité d’une conclusion. On découvre par là qu’il y a une nécessité de l’ordre du discours, que la liberté de l’esprit n’est pas synonyme d’arbitraire personnel ou de pure fantaisie. Penser est autre chose qu’opiner.

  -Les arguments d’autorité sont ruinés par l’autorité de la démonstration. On appelle argument d’autorité un argument  tirant sa vérité du prestige de celui qui l’énonce. Ex : C’est vrai puisque tel savant l’a dit. C’est vrai puisque c’est une vérité révèlée. C’est vrai puisqu’on l’a toujours dit. (Prestige de la tradition).

« Il n’est qu’une façon de s’imposer par une autorité qui n’emprunte rien au dehors, il n’est qu’un mode d’affirmation inconditionnel, la démonstration. » Jean Cavaillès. Sur la logique et la théorie de la science, [1]Vrin, 1997,  p. 39.

 

PB: Suffit-il qu’une démonstration soit rigoureuse pour qu’elle soit vraie ?

  Non car la rigueur et la nécessité logique des enchaînements de propositions, conditions nécessaires de la validité d’un discours, ne sont pas une condition suffisante pour garantir la vérité d’une conclusion. Encore faut-il qu’ils s’effectuent à partir de prémisses ayant une vérité.

  On peut en effet déduire avec rigueur, c’est-à-dire sans aucune incohérence, des conclusions de prémisses fausses. C’est le propre de ce qu’Aristote appelle le syllogisme rhétorique ou sophistique. On peut aussi déduire une conclusion de prémisses simplement probables ; ce qu’Aristote appelle le syllogisme dialectique.

  (Voir le cours du début de l’année opposant Platon, pour qui la dialectique est la méthode de la science, et Aristote pour qui la dialectique ne saurait être une science car là où il y a débat il n’y a pas science. Une science est démonstrative ou elle n’est pas science comme il a été dit plus haut)

   En toute rigueur la conclusion d’une démonstration serait absolument certaine si les prémisses à partir desquelles elle est établie étaient elles-mêmes démontrées. Mais pour les démontrer il faut remonter à des propositions elles-mêmes démontrées et ainsi à l’infini. Dans cette régression vers les principes la raison rencontre ses limites. Elle découvre qu’elle remonte à des propositions premières qui lui servent à démontrer toutes les autres mais qu’elle ne peut pas démontrer. Ces propositions constituent les points de départ de la démonstration c’est-à-dire les conditions de possibilité de cette dernière.

 

PB : Qu’en est-il de ces principes ? Sont-ils des vérités ?

  S’ils sont vrais sans être démontrés cela signifie que la raison a d’autres voies d’accès au vrai que la démonstration.

 

PB : Quelle est l’opération intellectuelle qui pose les premiers principes ?

  (Ou les premières notions car il en est pour celles-ci ce qu’il en est pour les propositions. Pour définir une notion on utilise d’autres notions et en dernière analyse la définition suppose des notions servant à définir les autres mais n’étant pas elles-mêmes définies)

  La réponse classique consiste à dire que les premiers principes et les premières notions sont objets d’intuition car ce sont des évidences.

  L’évidence est l’idée dont la vérité ou la notion dont la signification saute aux yeux.

  « La géométrie ne définit aucune de ces choses : espace, temps, mouvement, nombre, égalité ni les semblables qui sont en grand nombre, parce que ces termes là désignent si naturellement les choses qu’ils signifient à ceux qui entendent la langue que l’éclaircissement qu’on en voudrait faire apporterait plus d’obscurité que d’instruction » Pascal. De l’esprit de géométrie 1657

  D’où la définition qu’on donnait traditionnellement de l‘axiome : proposition indémontrée et indémontrable qui s’impose à l’esprit par son évidence. Ex : Deux quantités égales à une même troisième sont égales entre elles.

   Au 17e siècle le débat porte sur la nature de la faculté permettant la connaissance intuitive de l’évidence.

  Pour Descartes l’intuition est un mode de connaissance rationnel grâce auquel l’esprit atteint directement son objet. «  C’est la représentation qui est le fait de l’intelligence pure et attentive qui naît de la seule lumière de la raison, et qui, parce qu’elle est plus simple est encore plus certaine que la déduction […]Ainsi chacun peut voir par intuition qu’il existe, qu’il pense, que le triangle est délimité par trois lignes seulement, la sphère par une seule surface et autres choses semblables, qui sont bien plus nombreuses que ne le remarquent la plupart des gens, parce qu’ils dédaignent de tourner leur esprit vers des choses si faciles » Règles pour la direction de l’esprit. III.

  Pour le chrétien Pascal, au contraire, l’impossibilité pour la raison de démontrer tous ses énoncés est le signe de l’impuissance de la raison humaine à construire une science selon un ordre accompli.  Il y a là matière à humilier la raison, à pointer une fois de plus la misère de la condition humaine sans une aide en quelque sorte surnaturelle. La raison a besoin du secours d’une autre faculté pour rendre possible son exercice et lui permettre un accès à la vérité qui, à défaut, lui serait refusée. Cette faculté est le cœur.

  « Nous connaissons la vérité, non seulement par la raison, mais encore par le cœur : c’est de cette dernière sorte que nous connaissons les premiers principes, et c’est en vain que le raisonnement qui n’y a point part, essaye de les combattre. Les pyrrhoniens, qui n’ont que cela pour objet, y travaillent inutilement. Nous savons que nous ne rêvons point ; quelque impuissance où nous sommes de le prouver par raison, cette impuissance ne conclut autre chose que la faiblesse de notre raison, mais non pas l’incertitude de toutes nos connaissances, comme ils le prétendent. Car la connaissance des premiers principes, comme qu’il y a espace, temps, mouvement, nombres, est aussi ferme qu’aucune de celles que nos raisonnements nous donnent. Et c’est sur ces connaissances du cœur et de l’instinct qu’il faut que la raison s’appuie, et qu’elle y fonde tout son discours. (Le cœur sent qu’il y a trois dimensions dans l’espace et que les nombres sont infinis ; et la raison démontre ensuite qu’il n’y a point deux nombres carrés dont l’un est double de l’autre. Les principes se sentent, les propositions se concluent ; et le tout avec certitude, quoique par différentes voies). Et il est aussi inutile et aussi ridicule que la raison demande au cœur des preuves de ses premiers principes, pour vouloir consentir, qu’il serait ridicule que le cœur demandât à la raison un sentiment de toutes les propositions qu’elle démontre pour vouloir les recevoir.

  Cette impuissance ne doit donc servir qu’à humilier la raison qui voudrait juger de tout, mais non à combattre notre certitude, comme s’il n’y avait que la raison capable de nous instruire » Pensées [2]B 282

 

PB: L’évidence est-elle un critère infaillible de la vérité ?

  Y a-t-il des idées si claires et si distinctes qu’il soit impossible d’en douter ?

  L’évidence est-elle la propriété intrinsèque de certaines idées ou bien les idées qu’on trouve évidentes sont-elles simplement celles qui suscitent en nous un sentiment d’évidence ? Et quelles sont ces idées sinon celles qui vont dans le sens de nos désirs, de nos intérêts, de nos passions ou de nos conditionnements culturels ?

Lagneau disait que  « les prisonniers de la caverne sont les prisonniers de l’évidence » et Bachelard qu’  « il n’y a pas d’évidences premières, il n’y a que des erreurs premières »

  Sans doute l’évidence rationnelle ne doit-elle pas être confondue avec les évidences sensibles de la connaissance vulgaire, reste que Descartes reconnaissait lui-même : « Il y a quelque difficulté à bien remarquer quelles sont celles que nous concevons distinctement ». Discours de la méthode. [3] Quatrième partie.

  D’où la boutade de Leibniz « Descartes a  logé la vérité à l’hostellerie de l’évidence mais il a oublié de nous en donner l’adresse ».

  Les sciences, mathématiques comprises, ont aujourd’hui renoncé à définir l’axiome par la notion d’évidence. Elles considèrent les premiers principes comme des hypothèses (ce qui est posé sous la thèse) qu’elles demandent d’admettre (sens traditionnel de la notion de postulat) parce qu’elles sont la condition du discours. Il s’ensuit que la forme de tout discours est nécessairement hypothéticodéductive.

 

PB : Comment les hypothèses à partir desquelles peut s’effectuer la démonstration sont-elles posées ?

  La pratique des savants permet d’apporter deux réponses à cette question.

  L’hypothèse peut être l’objet d’une intuition ou d’une induction.

  -Einstein, par exemple, sans nier que de nombreux principes théoriques sont les résultats d’un raisonnement inductif affirme qu’à un certain niveau de formalisation, les principes fondamentaux de la théorie sont saisis intuitivement. « Une compréhension intuitive de ce qui est essentiel dans un ensemble complexe de faits amène le chercheur à poser une ou plusieurs lois fondamentales à titre d’hypothèses. De cette loi fondamentale il tire ensuite les conséquences par une démarche logico-déductive et de façon aussi complète que possible » Induction et Déduction en Physique. [4] Albert Einstein

  Cette constatation le conduit à souligner qu’il n’y a pas de méthode pour inventer une hypothèse. Cette « compréhension intuitive » est peut-être le nom qu’il faut donner au génie créateur qui en sciences comme en art est moins de l’ordre des apprentissages que le propre d’esprits supérieurs. (Par le talent et la puissance de travail).

  -Ou alors l’hypothèse est formulée par induction.

L’induction est le raisonnement consistant à passer de la constatation d’un certain nombre de faits particuliers semblables à l’énoncé d’une loi générale. (Au sens d’universelle)

Ex : Observant qu’un corbeau puis un autre ; puis un autre est noir j’induis que tous les corbeaux sont noirs.

Ex : Sadi Carnot (1796.1832) constate que les machines à feu qu’il observe ont un même caractère essentiel : la production du travail s’y trouve toujours accompagnée « par le passage de calories d’un corps où la température est plus élevée à un autre où elle est plus basse » Il érige alors cette corrélation en loi : il n’est pas possible de transformer la chaleur en travail sans disposer de deux sources de chaleur ayant des températures différentes.

Clausius en 1850 généralise le théorème de Carnot et énonce le second principe de la thermodynamique (dit d’entropie) Dans une enceinte énergétiquement isolée, toutes les différences tendent à s’annuler spontanément.

La théorie peut donc reposer sur des principes obtenus par induction, principes permettant de démontrer telles ou telles lois dérivées.

  On voit le problème que pose ce genre de raisonnement. Qu’est-ce qui garantit la vérité des hypothèses fondant la démonstration ? Des observations réitérées certes, mais en droit, il est impossible d’affirmer qu’il n’existe pas un fait susceptible de falsifier le caractère universel des énoncés. Ce fait, Bachelard l’appelle « fait polémique » et il va de soi que l’observation d’un tel fait entraîne nécessairement le remaniement des énoncés théoriques. Qu’en est-il alors de la valeur des propositions qu’on avait démontrées avec les hypothèses précédentes ?

Conclusion

  Quelle que soit la nature des prémisses à partir desquelles on déploie la procédure démonstrative, aucune n’a le caractère infaillible d’une vérité absolue. Il s’ensuit que les conclusions ne sont pas plus infaillibles que les points de départ. La démonstration qui fait la force de l’esprit est aussi ce qui en révèle la faiblesse.

  Les esprits faibles et paresseux en tireront argument pour se justifier dans leur faiblesse et leur paresse.

  Les esprits forts et courageux ne trouveront pas dans cette imperfection un alibi pour renoncer à contribuer à l’effort théorique qui fait l’honneur de l’homme. Au contraire, le savant ou le sage y verront le signe que l’homme n’est pas un dieu, qu’il est un homme seulement et que dans les sciences comme ailleurs sa grandeur procède de la conscience de sa finitude. Ils poursuivront donc avec courage l’effort séculaire de l’humanité, les limites de nos constructions intellectuelles les plus majestueuses les incitant seulement à se garder de tout dogmatisme.

 

NB : Idée-force : Il y a des  limites de la démonstration.

 

Kurt Gödel. 1906.1978.

 

  Les premières propositions nécessaires à toute démonstration ne peuvent pas, en dernière analyse, être démontrées. Aristote admet que si on devait toujours produire de nouvelles prémisses pour démontrer celles qu’on utilise pour démontrer, la démonstration serait impossible. « Il est absolument impossible de tout démontrer : on irait à l’infini, de telle sorte qu’il n’y aurait pas encore de démonstration »Métaphysique [5] Livre IV §4. Il faut donc admettre des propositions soit intuitivement, soit conventionnellement.

  La systématisation définitive des systèmes hypothético-déductifs ne peut pas, selon le théorème de Gödel (1931), être achevée. Gödel a, en effet, démontré 1°) qu’une arithmétique non contradictoire ne peut constituer un système complet et comporte nécessairement des énoncés indécidables.  Il se peut qu’en  certains cas, il soit possible de démontrer une chose et son contraire. (inconsistance) ; 2°) qu’il existe des vérités mathématiques impossibles à démontrer à l’intérieur d’un système (Théorème d’incomplétude).

  Le raisonnement démonstratif repose sur le principe de non contradiction. Or dans le Livre IV de la Métaphysique, [5] Aristote établit que ce principe (deux propositions contradictoires, à savoir deux propositions dont l’une affirme ce que l’autre nie, ne peuvent être vraies en même temps) ne peut pas être démontré, d’une part parce qu’il faudrait une régression à l’infini pour pouvoir tout démontrer, d’autre part parce que l’on ne peut démontrer le principe dont toute démonstration a besoin sans commettre une «  pétition de principe ».

   Il s’ensuit que l’impossibilité de tout démontrer n’est pas seulement une impossibilité de fait, tenant aux limites de nos capacités. Plus fondamentalement c’est une impossibilité de droit, liée à la condition par principe indémontrable, de toute démonstration.

   Ce qui n’empêche pas Aristote, d’une part de souligner que « c’est de l’ignorance […] que de ne pas distinguer ce qui a besoin de démonstration et ce qui n’en a pas besoin » Ibid. ; d’autre part  de tenter une « démonstration par réfutation » du principe de non contradiction.

  Il précise bien qu’il ne s’agit pas d’une démonstration au sens propre mais d’un exercice dialectique consistant à établir l’évidence du principe de non contradiction en faisant apparaître le caractère insoutenable de sa négation. En effet lorsqu’on parle, on admet implicitement que son propos a du sens pour soi-même et pour autrui, ce qu’on récuserait si on refusait le principe de non contradiction. Aristote reconduit ici la méthode par laquelle Platon dénonce le relativisme de Protagoras. Si, comme l’affirme Protagoras, la vérité est relative et se confond avec l’opinion, on ne peut éviter de reconnaître la vérité de celui qui soutient qu’elle en est distincte. Cette dernière proposition : « la vérité est distincte de l’opinion » est impossible à réfuter puisqu’elle est la vérité commune aux deux points de vue.

  Ainsi en est-il du principe de non contradiction. Il est commun à celui qui l’affirme et à celui qui le nie, car si ce n’était pas le cas, ce dernier se condamnerait au silence. Ce qui est impossible à réfuter peut donc être reconnu comme principe universel.